Better under Pressure

Dura-Bar Ductile Iron Manifolds – Pressure Rated to 6,500 PSI

The trend in today's hydraulic systems is toward more complexity and higher working pressures. More pressure means more efficiency for the user of a hydraulic system, but more challenges for the system's manufacturer of components like seals, valves, and manifolds.

Verified Rated System Pressure* 6,500 PSI	
Bore Size (in)	Minimum Allowable Wall Thickness (in)
.5	0.050
1.0	0.100
2.0	0.150

SECTION A-A SCALE 1:2

 \oplus \oplus

 \odot

 \odot

 \oplus

 \odot

 \oplus

 \odot

*Method of verifying the rated fatigue pressure (or establishing the rated burst pressure; or both) of the pressure containing envelope conforms to NFPA/ T2.6.1 R2-2000, Fluid power components - Method for verifying the fatigue and establishing the burst pressure ratings of the pressure containing envelope of a metal fluid power component, for the values, categories and special conditions (if any) as specified. The configuration shown above has an RFP = 44.82 MPa (6,500 psi), category C/90/ where k0 for ductile iron = 0.14

Testing, verification, and rating performed by the Fluid Power Institute at the Milwaukee School of Engineering.

In addition to its pressure rating being an advantage, Dura-Bar has superior machinability and little or no deburring is required, reducing the overall cost to produce a manifold.

